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In this paper, a new surrogate assisted multi-objective optimization (SAMOO) algorithm is presented to optimize an axial flux 

permanent magnet synchronous motor (AFPMSM) design. The proposed algorithm is a multi-objective algorithm (MOO) that can 

both maximize the torque amplitude and minimize the torque ripple to improve the power transmission efficiency and stability of an 

AFPMSM control considering various design variables. While the conventional MOO algorithms have a serious problem of requiring 

too many function calls especially considering many design variables, the proposed algorithm can make an accurate and a well-

distributed Pareto front set with fewer function evaluations. The superiority of the proposed algorithm is verified by comparing with 

conventional MOO algorithms. Finally, the proposed algorithm is applied to an optimal design process of an AFPMSM. 

 
Index Terms— Axial flux permanent magnet synchronous motor, kriging, multi-objective, surrogate model.  

 

I. INTRODUCTION 

O OPTIMAL design for the electric machines, various 

aspects such as efficiency, power, and cost should be 

considered. Hence, many researchers have studied multiple-

objectives optimization (MOO) in which the goal is to 

minimize or maximize several conflicting objective functions 

simultaneously [1]. Especially, nondominated sorting genetic 

algorithm II (NSGA-II) and multi-objective particle swarm 

optimization (MOPSO) have been popularly used [1], [2]. 

However, conventional algorithms require many function 

calls to solve MOO problems, which dramatically increase the 

optimization time due to the use of a finite element method 

(FEM) at every function call. Especially in an electric machine 

with many design variables, the optimization time proportion-

ally increases since FEM analysis is required at every function 

call [3], [4].  

To address this problem, we propose a new surrogate 

assisted MOO (SAMOO) algorithm. By using kriging 

surrogate model and solution searching based on curve fitting 

method, the computational time can be significantly reduced   

even considering many design variables [3]-[5]. The proposed 

algorithm concentrates on improving the convergence speed, 

the well-distributed Pareto front set, and solution diversity. Its 

superior performance is verified by comparing with 

conventional MOO algorithms with a test function.  

Furthermore, the proposed algorithm is applied to the de-

sign process of an axial flux permanent magnet synchronous 

motor (AFPMSM).  

II. PROPOSED ALGORITHM 

A.  Kriging surrogate model  

In the kriging method, the estimated value, z
*
, is a weighted 

linear combination of given n sample points as given by 
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Fig. 1. Solution searching by using curve fitting. 

where zi and λi are the i
th

 sample point and weight, respectively. 

The estimation variance of error is defined by
 

 
2

2
2 *

o o
1

n

i i
i

E z z E z z 


   
      
     

               (2) 

where the true value at a location xo is zo. Equation (2) is de-

veloped, and a constraint is added in order to ensure the unbi-

ased estimation as follows:  
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where ω is a Lagrange multiplier to consider the constraint. 

When equation (3) is minimized with respect to λi and ω, the 

ordinary kriging equation is obtained. The covariance matrix 

Covij can be defined as   

 2 , ,ij i jCov R x x                              (5) 

where R is the correlation matrix. In this research, one of the 

correlation functions, a Gaussian correlation function which 

is most commonly used is adopted as follows: 
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Fig. 2. Pareto front produced by SAMOO for the test function. 
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where m is the dimension of design variables and θ is an 

unknown covariance parameter vector, which influences the 

effect of covariance function. In order to estimate the best θ, 

maximum likelihood estimation is used [5]. 

B. Solution searching based on curve fitting method  

The MOO algorithm applied in the FEM analysis should 

solve the MOO problem with fewer function calls to reduce 

the computational time. To do this, new solutions should be 

effectively added in the blank of the Pareto front set [1]. 

As a blank, Dmax region is defined as the region with maxi-

mum distance between the nondominated solutions. The Dmax 

is computed by 
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where fi is the i
th

 objective function, x1, x2, and x3 represent the 

design variables, Np is the number of nondominated solutions, 

and Nob is the number of objective functions. The dotted re-

gion in Fig. 1 represents the Dmax region. 

The cubic spline interpolation model constructed by the 

nondominted solutions is used for the effective addition of 

solution in the blank of the Pareto front set. The pink line in 

Fig. 1 shows the interpolated curve reflecting the Pareto front 

set in the objective function space. In Fig. 1, Added solution is 

located on the interpolated curve in the Dmax region.  

The design variables are inversely searched by comparing 

the objective values of the surrogate model to those of Added 

solution, the minimum design variables difference, εmin, is 

searched by 
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where i ∈{1, 2, 3, ···, Ngridx1}, j ∈{1, 2, 3, ···, Ngridx2}, and k 

∈{1, 2, 3, ···, Ngridx3}. Ngridx1, Ngridx2, and Ngridx3 are the number 

of x1, x2, and x3 grids, respectively and fl,add is the l
th

 objective 

value of the added solution. 

Due to the direct addition of the solution in the Dmax region, 

the well-distributed Pareto front set can be made with fewer 

function evaluations even considering many design variables. 

III. NUMERICAL TEST AND RESULT 

To verify the proposed algorithm, conventional algorithms 

such as NSGA-II and MOPSO and the proposed SAMOO are  

TABLE I 

COMPARISON AVERAGE RESULTS FOR ONE HUNDRED TIMES TEST 

 GD SP No. function calls 

NSGA-II 0.0083 0.0432 1055 

MOPSO 0.0097 0.0551 940 

SAMOO 0.0056 0.0243 502 

 

applied into a test function as follows: 

Maximize F = (f1(x1, x2, x3), f2(x1, x2, x3)),   
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where 1< x1, x2, x3 <5. Fig. 2 shows the result by the proposed 

algorithm by applying five hundred function evaluations in the 

test function. It can be seen that SAMOO can realize the well-

distributed Pareto front set that encompasses the entire the 

Pareto front set. Additionally, the proposed algorithm is the 

best with respect to GD, SP, and requires less number of func-

tion calls as shown in TABLE I. GD denotes the distance be-

tween the constructed Pareto front set by using algorithms and 

the real Pareto front set. SP represents standard deviation of 

distance among solutions in the Pareto front set [2]. 

IV. OPTIMAL IPMSM DESIGN BY SAMOO 

In this section, SAMOO is applied in the AFPMSM design 

to validate the feasibility. The detail explanations about the 

application will be in the full paper. 

V. CONCLUSION 

Most of the electric machine design is the MOO problem in 

which various conflict objectives should be taken into account 

simultaneously. However, widely used conventional MOO 

algorithms require more function evaluations. 

Hence, this research has significant meaning due to the fact 

that the proposed algorithm not only considerably reduces the 

number of function calls, but also realizes the well-distributed 

Pareto front set considering many design variables. Further-

more, the feasibility of the optimal design using the proposed 

algorithm is verified by the AFPMSM optimal design. 

For these reasons, this research is noteworthy in that the 

proposed algorithm can be widely used in a variety of electric 

machine designs using FEM. 
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